Presentazione

Organizzazione della Didattica

DM270
MATEMATICA ORD. 2011


8

Curriculum Generale

 

Frontali Esercizi Laboratorio Studio Individuale
ORE: 64 0 0 119

Periodo

AnnoPeriodo
I anno1 semestre

Frequenza

Facoltativa

Erogazione

Convenzionale

Lingua

Italiano

Calendario Attività Didattiche

InizioFine
01/10/201620/01/2017

Tipologia

TipologiaAmbitoSSDCFU
caratterizzanteFormazione modellistico-applicativaMAT/068


Responsabile Insegnamento

ResponsabileSSDStruttura
Prof. FERRANTE MARCOMAT/06Dipartimento di Matematica

Altri Docenti

Non previsti.

Attività di Supporto alla Didattica

Non previste.

Bollettino

Un corso base di Calcolo delle Probabilità

Conoscenza approfondita delle catene di Markov a tempo discreto e tempo continuo, con capacita di risolvere autonomamente esercizi anche di livello avanzato.

64 ore di lezioni frontali (34 teoria e 30 esercitazioni)

Definizione di processo stocastico. Probabilità condizionata e valore atteso condizionato. Indipendenza condizionata. Catene di Markov a tempo discreto: definizione. Matrice di transizione, leggi congiunte e proprietà di Markov. Random Walk e sue proprietà. Tempi di arresto e proprietà di Markov forte. Probabilità e tempo medio di assorbimento. Classificazione degli stati. Distribuzioni invarianti. Teorema di Markov. Periodicità. Teorema ergodico. Processo di Poisson: costruzione del processo e definizioni equivalenti. Principali proprietà ed alcune importanti applicazioni. Catene di Markov a tempo continuo: definizione. Matrice generatrice. Principali proprietà, classificazione degli stati, probabilità di assorbimento, distribuzioni invarianti. Teorema ergodico. Applicazioni: Processi di nascita e morte. Modello di Wright-Fisher. Teoria delle code.

Esame scritto

Homeworks (10%) - Esame finale (90%)

J.Norris, Markov Chains. Cambridge: Cambridge University Press, 1996 Paolo Baldi, Calcolo delle probabilità (2 ed.). Milano: McGraw-Hill, 2011