Presentazione

Organizzazione della Didattica

DM270
FISICA ORD. 2014


6

Corsi comuni

 

Frontali Esercizi Laboratorio Studio Individuale
ORE: 48 0 0 125

Periodo

AnnoPeriodo
II anno1 semestre

Frequenza

Facoltativa

Erogazione

Convenzionale

Lingua

Inglese

Calendario Attività Didattiche

InizioFine
02/10/201719/01/2018

Tipologia

TipologiaAmbitoSSDCFU
affine/integrativo Nessun ambitoFIS/026


Responsabile Insegnamento

ResponsabileSSDStruttura
Prof. MASTROLIA PIERPAOLOFIS/02Dipartimento di Fisica e Astronomia "Galileo Galilei"

Altri Docenti

DocenteCoperturaSSDStruttura
Dott. PASSERA MASSIMOContrattoN.D.

Attività di Supporto alla Didattica

Non previste.

Bollettino

Il corso richiede un buon livello di conoscenza di fisica teorica, teoria quantistica dei campi, e teoria delle interazioni fondamentali.

Il corso si propone di fornire allo studente nuovi metodi di calcolo per ampiezze di scattering in teorie di gauge, e di discutere alcune applicazioni in ambito del Modello Standard.

Lezioni frontali ed esercizi

- PART I: MODERN METHODS FOR SCATTERING AMPLITUDES (P. Mastrolia) 1. Unitarity, Optical Theorem, Decay Rates 2. Cutkosky Rules, the Largest Time Equation, Feynman Tree Theorem 3. The Spinor Helicity Formalism 4. On-shell recurrence relation for tree-level amplitudes 5. One-Loop integrals and Integration-by-parts Identities 6. Unitarity-based methods 7. Integrand Reduction method 8. Differential Equations for Feynman Integrals PART II: TOPICS IN PRECISION ELECTROWEAK PHYSICS (M. Passera) 1. Introduction to the quantum corrections: The loop expansion, UV Divergent integrals, Dimensional regularization (DR). 2. Basic loops in QED: The photon self-energy at one-loop in DR, The photon propagator, Renormalization of the electric charge, Example of cancellation of UV divergences, The effective electric charge, Mass renormalization, Wave-function renormalization for the external legs. 3. The electron-photon vertex in QED: Formal structure and one-loop expression, The Dirac and Pauli form factors F_1(q^2) and F_2(q^2). 4. The anomalous magnetic moment of the electron: Preliminary remarks: g=2, The QED contribution, Other contributions and the determination of the fine-structure constant alpha. 5. The anomalous magnetic moment of the muon in the full SM: The QED contribution, The hadronic contribution, The EW contribution, SM prediction vs. experiment. 6. Renormalization of the electroweak theory, Mass renormalization for unstable particles, The On-Shell scheme, The M_W-M_Z relation and Sirlin's Delta r, The MSbar scheme, Introduction to the renormalization group. 7. The SM Higgs boson: Indirect limits from EW precision tests, The LHC discovery.

Esame orale


M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory. : Addison-Wesley Publishing Company, M.D. Schwartz, Quantum Field Theory and the Standard Model. : Cambridge University Press, 2014 F. Mandl and G. Shaw, Quantum FIeld Theory. : Wiley,