Laurea magistrale in Data Science (Ord. 2017)
ALGORITHMIC METHODS AND MACHINE LEARNING
(Titolare: Dott. GIANMARIA SILVELLO)

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 96A; 12,00 CFU

Prerequisiti:
The student should have basic knowledge of programming.

Conoscenze e abilità da acquisire:
This class teaches the basics in algorithmic methods and machine learning.
The part of the course covering algorithmic methods will first concentrate on the main data structures and their efficient implementation.
Attention will then shift to the fundamental algorithmic paradigms for problem solving and their applicability through the discussion of relevant case studies. The other part will focus on machine learning techniques typically used in a data science scenario. First of all, general concepts concerning machine learning will be introduced. Then, the theory underpinning each presented technique will be explained and subsequently followed by practical demonstrations using Python and Scikit-Learn.

Attività di apprendimento previste e metodologie di insegnamento:
The course consists of lectures.

Contenuti:
The course will cover the topics listed below:
- Algorithmic Methods:
Graphs: representation of graphs. Basic properties. Graph searches and applications.
- Machine Learning
Introduction to Machine Learning: why machine learning is useful; when to use it; where to use it; Machine Learning paradigms; basic ingredients of Machine Learning; complexity of the hypothesis space; complexity measures; examples of supervised learning algorithms.
Application Issues: A classification pipeline, representation and selection of categorical variables; model selection, evaluation measures.
in Depth (theory and practice using Python and Scikit-Learn): Support Vector Machines; Decision Trees and Random Forest; Neural Networks and Deep Learning; Manifold Learning; Kernel Density Estimation.

Modalità di esame:
Written exam and (individual) project. The project is due by the end of the course.

Criteri di valutazione:
The project work, and the written exam, will be evaluated on the basis of the following criteria: i) studentâ€™s knowledge of the concepts, methods, and technologies; ii) ability of the student to master the implementation technology; iii) studentâ€™s capacity for synthesis, clarity, and abstraction, as demonstrated by the written exam and project presentation. The final grade is obtained as the weighted sum of the grades of the written exam (80%) and the project (20%).

Testi di riferimento: CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio:
Log of the lessons, didactic material (slides) and the detailed exam modalities will be available in the Website accessible from the MOODLE platform.

BIG DATA COMPUTING
(Titolare: Prof. ANDREA ALBERTO PIETRACAPRINA) - Mutuato da:

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Il corso ha i seguenti prerequisiti: competenze relative al progetto e all'analisi di algoritmi e strutture dati, conoscenza delle nozioni fondamentali di calcolo delle probabilità e statistica, e capacità di programmazione in Java o Python.

Conoscenze e abilità da acquisire:
In questo corso gli studenti impareranno tecniche algoritmiche fondamentali per l'elaborazione efficiente ed efficace di insiemi di dati di grande dimensione. Inoltre, attraverso alcune attività pratiche, essi acquisiranno abilità relative allo sviluppo di applicazioni in Apache Spark, che Å uno dei framework di programmazione piÅ popolari e diffusi per big data computing.

Attività di apprendimento previste e metodologie di insegnamento:
Lezioni frontali e attività propedeutiche allo svolgimento degli homeork.

Contenuti:
Il corso affronterÀ i seguenti argomenti:

Introduzione al fenomeno dei Big Data

Programming frameworks: MapReduce/Hadoop, Spark

Clustering

Association Analysis

Graph Analytics (metrice di centralità, scale-free/Power-law graphs, fenomeno dello small world, uncertain graphs)

Similarity and diversity search

Modalità di esame:
L'esame consiste in alcuni homework di programmazione, assegnati ogni 2-3 settimane e da svolgere in gruppi di 3-4 studenti, e in una prova scritta individuale comprendente domande teoriche ed esercizi.

Criteri di valutazione:
La valutazione finale Å basata sugli homework e sulla prova scritta. Gli homework mirano a verificare la capacità degli studenti di programmare applicazioni big data in Apache Spark, mentre la prova scritta mira a verificare la loro conoscenza delle tecniche algoritmiche apprese durante il corso e la loro capacità di problem solving nel contesto big data.

Testi di riferimento:

Eventuali indicazioni sui materiali di studio:
Il diario delle lezioni, il materiale didattico e le modalità d'esame dettagliate sono resi disponibili sul sito web del corso accessibile anche da MOODLE.

BIOINFORMATICS

(Titolare: Prof. GIORGIO VALLE) - Mutuato da: Laurea magistrale in Informatica (Ord. 2014)

Periodo:
Il anno, 1 semestre

Indirizzo formativo:
Corsi comuni

Tipologie didattiche:
40Å+8E; 6,00 CFU

Prerequisiti:
Non ci sono prerequisiti particolari, se non quanto ci si aspetta da uno studente magistrale di informatica. Una conoscenza di base della genetica e della biologia molecolare sarÀ comunque utili per meglio inquadrare le motivazioni biologiche che stanno alla base della bioinformatica.

Il corso Å in lingua inglese, quindi Å necessario avere una buona conoscenza dell'inglese scritto e parlato.

Conoscenze e abilità da acquisire:
Il corso Å suddiviso in tre parti principali: la prima parte mette in relazione Biologia e Informazione; la seconda parte descrive i principali algoritmi utilizzati in bioinformatica per allineare sequenze biologiche e assemblare genomi; la terza parte tratta di problemi di bioinformatica relativi alla genomica funzionale. Inoltre il corso Å accompagnato da esercitazioni pratiche in cui gli studenti applicheranno metodi bioinformatici per analizzare dati genomici.

In considerazione della complessità della materia e in accordo con i descrittori di Dublino, particolare attenzione sarÀ dedicata affinchÀ gli studenti acquisiscano la capacità di integrare le conoscenze e gestire la complessità dei problemi trattati, nonché applicare metodi bioinformatici per analizzare dati genomici.

Attività di apprendimento previste e metodologie di insegnamento:
Il corso sarÀ tenuto con lezioni frontali e con esercitazioni pratiche. L'attività didattica sarÀ supportata da risorse messe a disposizione sulla piattaforma e-learning "Moodle", che comprendono materiale per apprendimento remoto e per auto-valutazione. In questo modo si vuole promuovere un'attività di "blended learning" con cui lo studente, almeno in parte, impara autonomamente, seguendo un percorso che lo accompagna attraverso contenuti reperibili in rete. Dato possibile si applicherÀ il paradigma della "flipped classroom" che inverte lo schema tradizionale di insegnamento, prevedendo che prima lo studente impari la lezione autonomamente per poi discutere e approfondire gli argomenti in classe.

Contenuti:
Questo corso è un corso di 6 crediti; cinque di lezioni ed uno di attività pratiche che consistono nell'implementazione di algoritmi oppure in un'approfondita indagine della letteratura, su argomenti assegnati.

Le lezioni sono organizzate in tre parti.

La prima parte Å un'approfondita introduzione alla Biologia, presentata come una disciplina scientifica centrata sull'Informazione. I meccanismi che facilitano la trasmissione e l'evoluzione dell'informazione biologica sarÀ presi come spunto per introdurre alcuni problemi della biologia che richiedono approcci computazionali e strumenti bioinformatici.

La seconda parte del corso descrive i principali algoritmi utilizzati per allineare sequenze biologiche, inclusi quelli sviluppati per il sequenziamento di DNA di ultima generazione. Sono inoltre descritti gli algoritmi utilizzati per l'assemblaggio "de novo" di genomi. Infine, la terza parte del corso copre alcuni aspetti della bioinformatica relativi alla genomica funzionale, come l'analisi del trascrittoma, le predizioni di proteine e motivi e la predizione delle strutture proteiche. Inoltre viene discusso il ruolo della bioinformatica nell'analisi di genomi individuali e nella medicina personalizzata.

Modalità di esame:
L'esame si articola in tre parti: 1) una sessione pratica nella quale lo studente deve descrivere un progetto di analisi di dati che deve essere conseguito almeno due giorni prima della data dell'esame, 2) una sessione di quiz su Moodle, che si svolgerÀ all'inizio dell'appello d'esame e 3) una discussione orale in cui lo studente deve descrivere il progetto che ha realizzato e rispondere a domande sui contenuti del corso. Un continuo monitoraggio sarÀ attuato durante l'intera durata del corso per verificare la comprensione degli
studenti.

Criteri di valutazione:
Nell'esame finale gli studenti dovranno dimostrare una comprensione sistematica del settore e dovranno sapersi destreghere con i metodi della ricerca associati ad esso. Inoltre gli studenti dovranno essere capaci di analisi critica, di valutare e sintetizzare idee nuove e complesse, integrando gli argomenti di questo corso con altre conoscenze.

Testi di riferimento:
CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio:
Non sono previsti libri ufficiali di testo e gli studenti saranno stimolati a trovare le informazioni su fonti multiple. Il materiale didattico sarà messo a disposizione sulla piattaforma e-learning Moodle.

BIOINFORMATICS AND COMPUTATIONAL BIOLOGY

(Titolare: Prof. SILVIO TOSATTO) - Mutuato da:

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Conoscenze base di bioinformatica, p.es. metodi di allineamento e database.

Conoscenze e abilità da acquisire:
Il corso intende comunicare conoscenze per metodi bioinformatici di analisi delle proteine. Inoltre, intende indurre lo studente a poter svolgere autonomamente ricerche in silico con strumenti bioinformatici disponibili.

Attività di apprendimento previste e metodologie di insegnamento:
Il corso si compone di lezioni frontali, esercitazioni pratiche al computer e journal club. Le esercitazioni sono da svolgere secondo le istruzioni fornite e complementate dallo studio di un problema bioinformatico diverso per ogni gruppo. Il journal club si articola in presentazioni di articoli della letteratura recente.

Contenuti:
1) Relazione evolutiva struttura/funzione/interazioni delle proteine
2) Teorie di folding ed evoluzione delle proteine
3) Predizione di struttura 3D per omologia e metodi ab initio; L'esperimento CASP
4) Predizione di caratteristiche strutturali
5) Predizione di funzione delle proteine; L'esperimento CAFA
6) Interazioni tra proteine
7) Cenni di Network Biology
8) Correlazione genotipo-phenotipo e proteine; L'esperimento CAGI.

Modalità di esame:
L'esame si compone di quattro parti separate, che devono essere superate tutte: (i valori tra parentesi indicano i pesi per il voto complessivo)
1) Valutazione delle esercitazioni (25%)
2) Presentazione journal club (25%)
3) Stesura di una relazione finale su una proteina ignota (25%)
4) Esame orale con discussione sulla relazione finale e domande sul corso (25%)

Criteri di valutazione:
Viene valutata:
1) la comprensione di concetti e gli algoritmi presentati a lezione
2) la capacità di applicare le nozioni fornite a lezione su problemi reali
3) la capacità critica di saper utilizzare i metodi nei modi più opportuni, scegliendo tra le alternative possibili
4) la capacità espositiva e di discussion critica durante il journal club

Testi di riferimento:

BIOLOGICAL DATA

(Titolare: Prof. SILVIO TOSATTO)

Periodo: II anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:

Conoscenze e abilità da acquisire:
Il corso intende comunicare le conoscenze di base sui diversi tipi di dati biologici, come sequenze, strutture, reti e letteratura. Inoltre intende permettere allo studente lo sviluppo autonomo di un progetto di ricerca in bioinformatica strutturale, definendo lo stato dell'arte per un problema aperto e tentativo di risolverlo con lo sviluppo di software che estenda librerie esistenti e la valutazione critica dei risultati ottenuti.

Attività di apprendimento previste e metodologie di insegnamento:
Il corso si compone di lezioni frontali, esercitazioni pratiche al computer, sviluppo di un progetto e presentazione dello stesso con discussione critica. Le esercitazioni servono a familiarizzare lo studente con le librerie software da usare per un progetto bioinformatico relativo ad un problema attuale diverso per ogni gruppo. La presentazione del progetto richiede una discussione in cui far
emergere i punti di forza e debolezza della soluzione prescelta.

Contenuti:
Il corso si compone di quattro parti, che corrispondono ai diversi tipi di dati biologici:

1) Sequenze
 1.1) DNA e proteine
 1.2) Banche dati
 1.3) Allineamenti

2) Strutture
 2.1) Folding proteico
 2.2) Banche dati
 2.3) Predizione di struttura

3) Reti di interazione
 3.1) Interazioni biologiche
 3.2) Banche dati
 3.3) Proprietà emergenti

4) Letteratura
 4.1) Articoli scientifici
 4.2) Banche dati
 4.3) Text mining

Modalità di esame:
L'esame si compone di tre parti separate, che devono essere superate tutte: (i valori tra parentesi indicano i pesi per il voto complessivo)
1) Compitini inerenti alle esercitazioni (ca. 20%)
2) Progetto (ca. 50%)
3) Presentazione del progetto con valutazione critica (ca. 30%)

Criteri di valutazione:
Viene valutata:
1) la comprensione di concetti e gli algoritmi presentati a lezione
2) la capacità di applicare le nozioni fornite a lezione su problemi reali
3) la capacità critica di saper utilizzare i metodi nei modi più opportuni, scegliendo tra le alternative possibili
4) la capacità di sviluppare software riutilizzabile estendendo librerie esistenti
5) la capacità espositiva e di discussione critica

Testi di riferimento:
CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio:
Sul sito E-learning vengono resi disponibili molti materiali per il corso. Questi comprendono i lucidi del corso (appena disponibili) e le registrazioni audio (podcast), le dispense e la letteratura usata per i progetti.

BUSINESS ECONOMIC AND FINANCIAL DATA

(Titolare: Prof. OMAR PACCAGNELLA)

Periodo: Il anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Basic statistics: descriptive statistics and probability. Inferential statistics: estimation, confidence intervals and hypothesis testing.

Conoscenze e abilità da acquisire:
This course aims at introducing the students to the main statistical features and concepts underlying the analysis of data collected over time, as well as providing the basic statistical solutions to analyse such data in economic, financial and business settings.

Attività di apprendimento previste e metodologie di insegnamento:
Lectures and Laboratories. Working in groups.

Contenuti:
Decomposing and analysing economic time series: latent component approaches and ARMA modelling.
Enhancing the analysis of economic and financial time series data: some case studies.
Business and marketing data analyses: the joint use of cross-sectional and temporal dimension and the introduction of dynamic modelling.

Modalità di esame:
Homework and Final Presentation.

Criteri di valutazione:
Students will be evaluated according to their level of knowledge of some tools and techniques to analyse economic, financial or business data and their ability to apply them to real cases.

Testi di riferimento:
COGNITIVE, BEHAVIORAL AND SOCIAL DATA

(Titolare: Prof. GIUSEPPE SARTORI)

Periodo: I anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Nozioni di apprendimento automatico

Conoscenze e abilità da acquisire:
Alla fine del corso gli studenti saranno in grado di comprendere problemi complessi nelle scienze cognitive, sociali e comportamentali, di scegliere le metodologie più appropriate per estrarre informazioni dai dati, e di integrare le conoscenze di data science con aspetti riguardanti le scienze sociali, il cervello, la mente e il comportamento. Verranno inoltre acquisiti:
- I concetti di base di psicologia cognitiva, psicologia sociale e scienze del comportamento.
- Gli strumenti e le metodologie dell'analisi dei dati cognitivi, comportamentali e sociali.
- Abilità pratiche di analisi dei dati applicata a problemi cognitivi, comportamentali e sociali.

Attività di apprendimento previste e metodologie di insegnamento:
I docenti introdurranno ogni argomento discutendo le questioni più rilevanti e le più interessanti e recenti evidenze sperimentali e applicazioni.

Contenuti:
Lo scopo del corso è di fornire una panoramica di applicazioni concrete della Data Science alle scienze comportamentali, cognitive, sociali e alle neuroscienze. Il corso fornisce le basi dei metodi per analizzare dati comportamentali, cognitivi, e relativi a funzionalità e struttura del cervello. La panoramica fornita includerà esempi di recenti applicazioni, selezionati anche a seconda degli interessi degli studenti. Verranno discusse le limitazioni dello stato dell'arte e le direzioni di sviluppo future. I contenuti saranno i seguenti.

- Concetti di base sul funzionamento cognitivo del cervello umano (attenzione, memoria, apprendimento, linguaggio ecc.) e relative misure
- Concetti di base di psicologia sociale e comportamento sociale (preferenze, giudizio, identità di gruppo, ecc.) e relative misure
- Misure comportamentali e come ottenere (es. RT); misure di comportamento implicite ed esplicite (es. la IAT)
- Estrarre e predire informazioni dal comportamento (es. lie detection, predizione di "malicious behavior" dall'attività sui social networks, fake online reviews, security, ecc.)
- Misure psicofisiologiche e come ottenere (es. HR variability, SCR, espressioni facciali, EEG, fMRI, etc.)
- Estrarre e predire informazioni dalle misure psicofisiologiche
- Estrarre e predire informazioni dalle attività cerebrali: “mind reading applications” (es. psychopathology detection, ricostruzione di esperienze visive dall'attività cerebrale, brain computer interface devices, ecc.)
- Applicazioni al marketing di dati sociali e comportamentali (es. skill assessment and prediction, psychology of taxes, predicting preferences and personality from social networks activity, sentiment analysis, ecc.)
- Questioni legate all'applicazione di apprendimento automatico nella ricerca comportamentale (es. il problema della riproducibilità)

Modalità di esame:
Esame orale e progetto

Criteri di valutazione:
Verrà valutata la conoscenza degli argomenti proposti durante le lezioni, l'acquisizione dei concetti e metodologie proposte, e l'abilità di applicarli.

Testi di riferimento:
CONTENUTO NON PRESENTE

COMPUTER AD NETWORK SECURITY

(Titolare: Prof. MAURO CONTI) - Mutuato da: Laurea magistrale in Informatica (Ord. 2014)

Periodo: II anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Il corso non prevede propedeudecità. Tuttavia, sono consigliate conoscenze di base di reti, crittografia, e sistemi distribuiti (tipicamente acquisite nei corsi di Laurea in Informatica).

Conoscenze e abilità da acquisire:
Apprendere i concetti di sicurezza di base, analizzando le più recenti proposte di ricerca nell'ambito. Al termine del corso gli studenti saranno in grado non solo di analizzare con spirito critico un sistema software nel suo complesso, ma anche di aggiornare
Attivita' di apprendimento previste e metodologie di insegnamento:

Lezioni frontali; discussione di articoli scientifici.

Contenuti:
Teoria: sicurezza RFID, captcha, sistemi di archiviazione non sicuri, sicurezza sugli smartphone, attacchi su smartphone, protezione di password, attacchi Denial-of-Service distribuiti, deep learning, biometria, sicurezza VoIP, secure content delivery, comunicazioni anonime, rilevamento keylogger, anonimato in WSN, rilevamento di botnet, HW affidabile, sicurezza degli passaporti RFID, attacco di tipo node replication in WSN, aggregazione sicura dei dati in WSN, problemi di privacy nei social media, sicurezza smartphone Android, sistemi di votazione elettronica, rilevazione botnet P2P, meccanismi di taint analysis, sicurezza dei browser, privacy di servizi di localizzazione, Named Data Networking security, Named Data Networking privacy, sicurezza dei sistemi cloud, anonimato nella rete wireless, profilazione di utenti su smartphone, problemi di sicurezza SSL in Android, circumvent censorship, secure messaging, sicurezza tecnologica operativa, sicurezza dei sistemi cyber-fisici.

Laboratorio: strumenti di sicurezza avanzati, inclusi: analisi del traffico con strumenti di apprendimento automatico, inferenza di dati, strumenti di sicurezza in Android, meccanismi di attacco e difesa per buffer overflow; analisi avanzata di sistema Malware e Advanced Persistent Threat; sicurezza web; strumenti di analisi di reti sociali, trusted platform modules.

Modalita' di esame:
Progetto con relazione + esame orale.

Criteri di valutazione:
Conoscenza dei concetti studiati nel corso.

Testi di riferimento:
M. Bishop, Introduction to Computer Security. : Addison-Wesley Professional,

Eventuali indicazioni sui materiali di studio:
Libro (testo principale Computer Security: Principles and Practice 2/E) e articoli scientifici.
Il corso sarà tenuto in Inglese.
Il sito web del corso offrirà tutte le informazioni e materiale ulteriore: http://www.math.unipd.it/~conti/teaching.html

DEEP LEARNING

(Titolare: Prof. ALESSANDRO SPERDUTI) - Mutuato da: Laurea magistrale in Informatica (Ord. 2014)

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Lo studente deve avere conoscenze di base di programmazione e algoritmi. È inoltre consigliabile conoscere i concetti in termini di probabilità e di analisi delle funzioni multivariate.

Conoscenze e abilità da acquisire:
Questo corso insegna i concetti, i metodi e le tecnologie alla base della visione artificiale e dei servizi cognitivi, vale a dire API e servizi tipicamente disponibili su cloud, che aiutano gli sviluppatori software a creare applicazioni di intelligenza artificiale. Esempi di funzioni intelligenti che possono essere aggiunte ad un'aplicazione tramite l'utilizzo di servizi cognitivi sono: il riconoscimento visuale; il rilevamento delle emozioni da video ed il riconoscimento facciale; comprensione linguistica e del parlato.

Il corso inoltre insegna le competenze e le abilità specifiche necessarie per applicare tali concetti alla progettazione e all'implementazione di applicazioni di intelligenza artificiale. Gli studenti dovranno affrontare esercizi pratici in laboratorio informatico, in modo da provare l'applicazione delle conoscenze acquisite a piccoli esempi pratici.

Attivita' di apprendimento previste e metodologie di insegnamento:
Il corso consiste in lezioni e esercizi in laboratorio informatico. Gli esercizi in laboratorio informatico consentono agli studenti di sperimentare, in diversi scenari operativi, le tecniche introdotte a lezione. In questo modo gli studenti possono verificare sperimentalmente i concetti appresi in classe, acquisire la capacità di applicare i concetti appresi e di esprimere un giudizio critico.

Contenuti:
- Il corso comprende gli argomenti elencati di seguito:
 - Introduzione:
 - Dalla cognizione umana all'intelligenza artificiale e ai sistemi cognitivi; breve introduzione ai paradigmi di intelligenza artificiale e apprendimento automatico; la rivoluzione dell'IA: attuali tendenze e applicazioni, le principali sfide.
 - Servizi cognitivi:
 - Concetti basilari; servizi linguistici, vocali e di visione; principali provider e API (IBM Watson, AWS, Google Cloud); tecnologie abilitanti.
 - Apprendimento automatico ed applicazioni:
 - Classificazione; introduzione al deep learning e all'apprendimento di rappresentazioni; fasi di addestramento e test; misure di valutazione; il bias negli algoritmi.
 - Visione ed elaborazione di immagini:
 - Percezione nelle macchine; formazione dell'immagine, campionamento, filtraggio e operatori lineari; gradiente dell'immagine, edge e corner; progettare descrizion in modo efficace (SIFT e feature basate sul gradiente); confronto tra immagini.
 - Riconoscimento visivo e oltre:
 "Insegnare ai computer a vedere": bag-of-feature, piramidi spaziali e pooling; apprendimento di rappresentazioni per la visione, reti neurali convoluzionali; R-CNN e segmentazione; descrizione di immagini, scenari multi-modali e uno sguardo oltre al paradigma di apprendimento supervisionato.
 - Esercizi pratici:
 - Cosa c'è nella scatola? Come costruire una pipeline di riconoscimento visivo; utilizzare i servizi cognitivi per il riconoscimento /
comprensione delle immagini; combinare diversi servizi e modalità.

Modalità di esame:
Lo studente deve sviluppare, in accordo con il docente, un piccolo progetto applicativo. Inoltre, lo studente deve presentare una relazione scritta sul progetto svolto, in cui si discutono criticamente tutte le questioni trattate durante la sua realizzazione. L'esame consiste prevalentemente in una breve presentazione e discussione del progetto svolto, in cui il docente potrà anche chiedere dettagli e/o altri contenuti visti a lezione.

Criteri di valutazione:
Il lavoro di progetto e l'esame orale saranno valutati sulla base dei seguenti criteri:
- conoscenza da parte dello studente dei concetti, dei metodi e delle tecnologie alla base dei servizi cognitivi (con particolare enfasi sulle tematiche di visione artificiale);
- capacità dello studente di padroneggiare la tecnologia di implementazione;
- capacità di sintesi, chiarezza e astrazione dello studente, come dimostrato dalla relazione scritta e dal progetto.

Testi di riferimento:
CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio:
Le presentazioni mostrate durante le lezioni sono rese disponibili su Moodle come materiale di riferimento.

DIDATTICA DELLA CHIMICA
(Titolare: Prof. MAURO SAMBI)

Periodo: I anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 52A; 6,00 CFU

FINAL EXAMINATION
(Titolare: da definire)

Periodo: II anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 15,00 CFU

Contenuti :
Elaborato scritto preparato sulla base dell'attività di Stage
Testi di riferimento:
CONTENUTO NON PRESENTE

FUNDAMENTALS OF INFORMATION SYSTEMS
(Titolare: Prof. GIORGIO MARIA DI NUNZIO)

Periodo: I anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 96A; 12,00 CFU

Prerequisiti :
The student should have basic knowledge of computer programming and problem solving skills.

Conoscenze e abilità da acquisire :
The aim of this class is to teach the concepts, methods, and technologies which any modern data scientist should master. In particular, the focus of this class is on the processing/storing of data and big data, which also involves elements of computer networking. The ability of processing data effectively and efficiently will be gained using Python, which is possibly the reference programming language for data scientists. Ultimately, students will acquire coding skills to collect, clean, visualize, and analyse data, and more generally to tackle with any data science/machine learning task. Concerning storage, the basics of relational databases are introduced, followed by a review of non-relational solutions typically adopted for big data. Basics of systems for storage of streams of data are presented as well. The networking submodule provides an introduction to fundamental concepts in the design and implementation of computer communication networks, their protocols, and applications. Topics covered in this part include: layered network architecture, data link protocols, network and transport protocols and applications. Examples will be drawn from the Internet TCP/IP protocol suite. After that, advanced and emerging networking paradigms aimed at addressing QoS and engineering flexibility of current infrastructure networks are introduced. Topics covered range from software defined networking to cloud provisioning schemes and data centers.

Attività di apprendimento previste e metodologie di insegnamento :
The course consists of lectures.

Contenuti :
The course is structured into 3 submodules:
- Python Programming (for Data Science)
 This submodule provides students with the foundational coding skills they need as data scientists. First, the basics of the Python programming language are covered (i.e., built-in data types, functions, I/O, etc.) along with the environment which is used throughout the class (i.e., Jupyter Notebook). Afterwards, students will dig into a set of the most up-to-date data science Python packages; those are: numpy/scipy (for numerical/scientific computing), pandas (for data manipulation), matplotlib/seaborn (for data visualization), and finally scikit-learn (for learning from data). Eventually, at the end of this submodule students will be able to implement all the stages of a typical machine learning pipeline: from collecting data to building predictive models for solving either a classification or a regression
This submodule is dedicated to data storage, and it covers the following topics:
- Architecture of Database management systems (DBMS). Relational modeling.
- SQL Language: Data Definition and Data Manipulation Language, Database Query.
- The PostgreSQL database: Creation and Definition of a Database, SQL Queries.

This submodule allows students to get familiar with computer networking. In particular, it focuses on the following topics:
- Networking Fundamentals: Network architectures (OSI Model); TCP and UDP Transport layer protocols; IP Addressing and Routing.
- Link Layer Forwarding; DNS and DHCP.
- Advanced Networking: Virtual LAN (VLAN) and Virtual eXtensible Lan (VXLAN), Software Defined Networking: control, data plane and virtualization; concepts on Cloud Computing; service and deployment models: data centers architectures, topologies, addressing, routing, traffic characteristics; Case Study: The Web of Things (IoT standards and protocols).

Modalità’ di esame :
The student is expected to pass a written and an oral exam.

Criteri di valutazione :
The written and the oral exams will be evaluated on the basis of the following criteria: i) student’s knowledge of the concepts, methods, and technologies at the basis of the topics covered in the course; ii) student’s capacity for synthesis, clarity, and abstraction.

Testi di riferimento :
CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio :
Slides presented during the lectures are made available to students as reference material.

The database submodule will follow the book "Database Systems - Concepts, Languages and Architectures" by Paolo Atzeni et al., which is freely available at http://dbbook.dia.uniroma3.it/

GAME THEORY
(Titolare: Prof. LEONARDO BADIA) - Mutuato da:

Periodo:
Il anno, 1 semestre

Indirizzo formativo:
Corsi comuni

Tipologie didattiche:
48A; 6,00 CFU

Prerequisiti :
Un corso anche basilare di teoria della probabilità.

Conoscenze e abilità da acquisire :
L’insegnamento prevede l’acquisizione delle seguenti conoscenze e abilità, suddivise in due insiemi.

A seconda del tipo di fruizione/frequenza/mutuazione del corso da parte dello studente, l’importanza di queste due insiemi viene considerata diversamente. In particolare, la parte applicativa Â— rilevante per studenti di corsi di ambito ingegneristico frequentanti. Per gli studenti di corsi differenti, o per studenti non frequentanti, l’acquisizione di conoscenze e abilità si concentra nell’insieme degli obiettivi di base.

Attività’ di apprendimento previste e metodologie di insegnamento :
Lesseon convenzionali con il supporto di slide.
Previa interazione su piattaforma moodle.

Contenuti :
- Concetti base di teoria dei giochi
- Utilità, mercato, fattore di sconto
- Giochi statici in forma normale
- Dominanza, Equilibri di Nash
- Efficienza, prezzo dell’anarchia
- Giochi a somma zero, giochi minimax
- Strategie miste, equilibri misti
- Teorema di Nash, il teorema minimax
- The tragedy of the commons
- Giochi dinamici
- Strategie e sottogiochi
- Backward utility
- Equilibri di Stackelberg
- Giochi ripetuti, collaborazione
- Duopoli dinamici, collusion
- Cooperazione, pricing
Modalità di esame:
Per studenti di ingegneria frequentanti, l'esame coinvolge (a differenza degli altri) lo sviluppo di un progetto in gruppi di 1-3 persone, su argomenti del corso applicati alle ICT. L'argomento del progetto e' concordato con il docente durante il corso.

Per tutti gli studenti in qualunque caso l'esame comprende anche un esame scritto obbligatorio a libro aperto, dove vengono sottoposti quattro diversi problemi di game theory allo studente su argomenti toccati durante il corso. Per ogni esercizio, vengono poste tre domande.

Gli studenti di ingegneria frequentanti si limiteranno a risolvere 3 esercizi sui 4 proposti. Tutti gli altri (studenti non frequentanti, o studenti non di ingegneria) dovranno risolverli tutti e 4.

Se il test scritto e' sufficiente, gli studenti non frequentanti o gli studenti non di ingegneria potranno registrare il voto conseguito come voto finale dell'esame.

Gli studenti di ingegneria frequentanti invano discuteranno il progetto sviluppato durante il corso con un esame orale, da svolgersi dopo l'esame scritto. Questi esami orali si svolgono nella stessa giornata di un esame scritto, ma non necessariamente lo studente deve presentarsi nella stessa giornata per l'esame scritto e la discussione orale del progetto. Per il superamento dell'esame e' necessaria una valutazione sufficiente di entrambe le parti, esame scritto e discussione orale.

Criteri di valutazione:
Ogni domanda nei test scritti viene valutata fino a un massimo di 3 punti.
Per gli studenti di ingegneria frequentanti, la discussione del progetto viene valutata fino a 10 punti.
Il voto finale e' la somma numerica dei punteggi individuali delle domande e della discussione del progetto (se presente), limitata a 30. Un punteggio di 30 e lode e' assegnato agli studenti il cui punteggio numerico e' superiore a 31.

Nella valutazione di ogni domanda scritta vengono tenuti in considerazione:
- la pertinenza, la correttezza, e la completezza della risposta;
- l'utilizzo appropriato delle terminologie, metodologie, e rappresentazioni formali tipiche della teoria dei giochi
- l'acquisita capacita' di problem solving
- la capacita' di discussione e verifica ex-post della soluzione trovata

Nella valutazione del progetto (se presente) vengono tenuti in considerazione:
- l'originalita' della proposta e la pertinenza sia con le tematiche del corso che con le metodologie ingegneristiche tipiche dell'ICT
- la qualita' dell'esposizione orale
- la capacita' di lavoro di gruppo e la presenza di singoli contributi attribuibili ai partecipanti al progetto
- la capacita' di trarre conclusioni significative dal punto di vista scientifico grazie alle metodologie apprese nel corso

Testi di riferimento:
S. Tadelis., Game Theory: An Introduction.. : Princeton., 2013
Roberto Lucchini, A Primer in Game Theory. : Esculapio, 2011

Eventuali indicazioni sui materiali di studio:
Diversi libri forniscono una trattazione generale di teoria dei giochi.
A mero titolo di suggerimento, si puÃ² usare il libro di Tadelis come riferimento in senso generale. Questa parte comunque dovrebbe essere integrata con materiale per le applicazioni. Il libro di MacKenzie e DaSilva Â“ un buon esempio, anche se non Â“ obbligatorio usare un libro per questo scopo (si puA² fare riferimento anche a materiale trovato in rete).
In ogni caso, il docente fornirÃ² agli studenti tutte le dispense delle lezioni e appunti aggiuntivi.
Periodo: Il anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 42A; 6,00 CFU

Prerequisiti:
Non sono richiesti particolari prerequisiti.

Per gli studenti che parlano italiano, si suggerisce di frequentare contemporaneamente il laboratorio di INTERACTION DESIGN progettato per mettere ulteriormente in pratica quanto appreso in questo corso.

Conoscenze e abilità da acquisire:
Il corso offre la possibilità di acquisire conoscenze teoriche, metodi di ricerca e tecniche innovative per lo studio, la progettazione e la valutazione dell'interazione tra le persone e le tecnologie. Tali conoscenze sono utili per rendere l'interazione persona-macchina efficace ed efficiente e l'esperienza d'uso semplice, piacevole e complessivamente soddisfacente per l'utente. Le competenze che si acquisiranno interesseranno quindi i domini di conoscenza dell'interazione persona-computer (HCI) e dell'ergonomia cognitiva; in dettaglio si acquisiranno competenze negli ambiti:

- del design centrato sull'utente
- dei principi di base dell'ergonomia cognitiva
- della valutazione dell'esperienza dell'utente e dell'usabilità dei prodotti
- della comunicazione visiva e della visualizzazione dei dati
- dell'accessibilità e del design universale (es: design for older adults)
- del social computing e dell'ergonomia sociale

Attività di apprendimento previste e metodologie di insegnamento:
Lezioni tradizionali e interattive (presentazioni studenti, multimedia, risorse on-line) sugli aspetti teorici della disciplina saranno intervallati da laboratori didattici in cui si sperimenteranno i metodi e le tecniche appresi durante il corso. Lavori individuali e di gruppo tramite il design e lo sviluppo di prototipi di interfacce e sistemi interattivi permetteranno allo studente di acquisire competenze specifiche e pratiche.

Sono benvenute, ma non sono obbligatorie particolari precedenti competenze tecniche o informatiche.

Contenuti:
- Interaction design, modelli e users style. Paradigmi e strategie per sviluppare interactive systems (Chapters 1, 2)
- Human limits and implications per il design. Social Interaction - Emotional Interaction (Chapters 3, 4, 5)
- Interfacce (Chapter 6)
- Data e valutazione; UX/usability: lab e mondo reale; metodi avanzati: (eyes tracking, video analysis, EEG, EDA, T, HR-ECG e altri bio-signals; (Chapters 7, 13, 14, 15 + educational materials)

Modalita’ di esame:
Esame in forma scritta con 5 domande.

Criteri di valutazione:
La prima domanda aperta valuta la capacità acquisita dallo studente nell’utilizzare metodi e tecniche appresi nel corso per risolvere casi concreti di design o valutazione ergonomica di un sistema interattivo o delle sue interfacce. (peso 12/30)
La seconda domanda aperta valuta la capacità di sintetizzare teorie e metodi appresi durante il corso o sul manuale. (peso 9/30)
Le rimanenti domande hanno lo scopo di verificare le conoscenze teoriche e metodologiche acquisite e devono essere risposte in brevissima sintesi. (peso 3/30 ciascuna)

Testi di riferimento:
Helen Sharp, Jenny Preece, Yvonne Rogers, Interaction Design: Beyond Human-computer Interaction. : Wiley, 2019

Eventuali indicazioni sui materiali di studio:
FREQUENTANTI
Studiare i capitoli 1,2,4,5, 6 e leggere i capitoli 7, 13,14,15 del libro Helen Sharp, Jenny Preece and Yvonne Rogers suggerito sotto. Ulteriori eventuali materiali saranno a disposizione su moodle per tutti gli studenti.

NON FREQUENTANTI
Studiare i capitoli 1,2,4,5,7, 13,14,15 del libro suggerito sotto Chapter 3 Â“consigliassimo per gli studenti che arrivano da Data Science o da Multimedia engineering.

HUMAN DATA ANALYTICS
(Titolare: Prof. MICHELE ROSSI)

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Il corso richiede conoscenze in Teoria della Probabilità (variabili aleatorie, probabilità condizionata e formula di Bayes, distribuzioni di probabilità discrete e continue) e un minimo di conoscenza di linguaggi di programmazione (MatLab, Python). Anche se non strettamente necessarie, conoscenze nell'ambito di algebra lineare (es, spazi vettoriali e decomposizione ai valori singolari) e dell'analisi numerica dei segnali (trasformate di Fourier discrete) sono utili.

Si noti che il Professore, effettuerà dei brevi ripassi per le tecniche e teorie di cui sopra, ogni volta lo si renda necessario. Materiale e referenze per il ripasso personale da parte dello studente di tali tecniche verranno altresì forniti. Inoltre, anche se conoscenze pregresse sono sicuramente utili per lo studente, il corso Â“concepito in modo da non dipendere criticamente da esse.
Benchè non obbligatorio, si consiglia l’esame "Machine Learning" della Laurea Magistrale ICT for Internet and Multimedia, codice: INP6075419.

Conoscenze e abilità da acquisire:
1. Conoscere i principali algoritmi per la classificazione di dati multidimensionali, i loro pro e contro, le metriche per la loro valutazione
2. Conoscere le principali tecniche per l'apprendimento non-supervisionato (vector quantization), le loro prestazioni, i vantaggi e il loro utilizzo in seno a problemi reali nell'ambito dei biosegnali
3. Conoscere le principali tecniche di modellizzazione di serie temporali multivariate e il loro utilizzo in seno a problemi reali
4. Conoscere i principi e le tecniche dell’apprendimento supervisionato con particolare riferimento alle reti neurali (feed forward e convoluzionali), la loro programmazione in Python, e il loro utilizzo in seno a problemi reali
5. Conoscere i principali ambiti di applicazione, delle tecniche ai punti 1, 2, 3 e 4 e come queste tecniche sono state utilizzate per risolvere problemi nell’ambito "human data"
6. Acquisire la sensibilità necessaria per saper discernere e utilizzare i modelli ai punti 1, 2, 3, e 4
7. Essere in grado di utilizzare e implementare al calcolatore gli algoritmi ai punti 1, 2, 3 e 4 tramite il linguaggio Python

Attività di apprendimento previste e metodologie di insegnamento:
Il corso A – articolato come segue:
- Una lezione verrà dedicata alla presentazione del progetto del corso, del set di dati da utilizzare e delle modalità di esame
- Il corso A progettato, per ogni sezione, in modo da presentare prima una trattazione teorica dei metodi e dei modelli, per poi descrivere alcune applicazioni di riferimento, spiegando nel dettaglio come i metodi vengono usati / adattati nei vari ambiti, commentando scelte architetturali e le relative prestazioni
- Attività di laboratorio (12 ore): sei lezioni verranno dedicate all’attività di laboratorio, nella quale le tecniche sviluppate durante le lezioni teoriche verranno implementate e caratterizzate sperimentalmente utilizzando il linguaggio Python.

Tutto il materiale didattico presentato / utilizzato (slides e software) è reso disponibile sul sito personale del docente (protetto via username e password):

http://www.dei.unipd.it/~rossi/courses/HumanData/HDA.html

Le credenziali di accesso verranno comunicate dal docente nella lezione di introduzione al corso.

Contenuti:
Parte I â€“ Introduzione (2 ore)
- Introduzione al corso, modalità di esame, orari del docente, etc.
- Applicazioni: salute, servizi che includono il tracciamento di attività, applicazioni di sicurezza e emergenza, analisi di movimento

Parte II â€“ Tecniche di quantizzazione vettoriale (12 ore)
- Quantizzazione Vettoriale (QV):
 -- Significato, utilità, metriche
 -- K-means, soft K-means, Expectation Maximization
- Algoritmi per la QV non-supervisionata:
 -- Mappe Auto-Organizzanti (SOM), Reti Neurali "Gas" (GNG)
- Applicazioni a segnali biometrici quasi-periodici (ECG):
 -- Pre-processamento del segnale, normalizzazione, segmentazione
 -- Apprendimento di dizionari: concetti, architetture
 -- Rappresentazione efficiente di segnali ECG: descrizione di tecniche dello stato dell’arte
 -- Esempi di architetture per l’apprendimento non-supervisionato GNG-based per segnali ECG
 -- Architettura finale del sistema e risultati numerici

Parte III â€“ Analisi di dati sequenziali (10 ore)
- Modelli di Markov nascosti (HMM):
 -- Massima verosimiglianza per le HMM
 -- Algoritmo "Forward-backward"
 -- Algoritmo di somma-prodotto, algoritmo di Viterbi
- Applicazioni
 -- Identificazione: tipi di dati dinamici di digitazione su tastiere numeriche
 -- Riconoscimento vocale: estrazione di feature vocali, riconoscimento vocale tramite modelli di Markov nascosti

Parte IV: Lezioni di laboratorio (12 ore)
Le lezioni di laboratorio saranno effettuate in modo guidato, presentando allo studente codice pre-scritto e funzionante, ma allo stesso tempo soffermandosi su ogni blocco del codice, caratterizzandone il funzionamento e i dati che esso ritorna in uscita. Le lezioni si
incentreranno sulla comprensione del linguaggio Python e dei vari tools (Keras e TensorFlow) per la definizione e l’allenamento di reti neurali. Le reti neurali “feed forward” e quelle convoluzionali, verranno pienamente caratterizzate descrivendo i blocchi che le compongono, la loro programmazione e la creazione delle varie architetture neurali. Queste verranno infine allenate tramite diversi algoritmi che sfruttano la discesa del gradiente. Le reti trattate verranno poi testate con opportuni dataset. In estrema sintesi, gli argomenti trattati sono:

- Introduzione alla programmazione con il linguaggio Python
- Soluzione di un problema di inferenza statistica
- Reti neurali con struttura “feed forward”
- Reti neurali convoluzionali

Modalità di esame:
Questo A un corso di “machine learning” avanzato e applicato a problematiche reali. Pertanto, la verifica finale dell’apprendimento dello studente verterà su un progetto, che coinvolgerà le seguenti fasi di lavoro:

1. Il Professore assegnerà agli studenti un problema da risolvere, individuando un dataset aperto, pubblicamente fruibile e utilizzabile allo scopo. Il problema verrà descritto dal docente tramite un’apposita lezione, nella quale si spiegheranno altresì le modalità di presentazione dei risultati finali, via 1) una relazione finale, in forma scritta, 2) una presentazione, in forma orale

2. Gli studenti si distribuiranno in gruppi, con un massimo di due persone per gruppo di lavoro, e inizieranno a lavorare al progetto assegnato. La scelta della tecnica da utilizzare, il pre-trattamento dei dati per ottenere delle feature informative, etc. saranno tutti dettagli da risolvere, a discrezione dello studente. Il docente si renderà disponibile per seguire i gruppi nelle varie fasi di lavoro

3. Ogni gruppo risolverà il problema proposto secondo la tecnica prescelta e presenterà: 1) una relazione finale, 2) una presentazione al docente in forma orale dove si descriverà il problema affrontato, i modelli e tecniche utilizzati, il codice realizzato allo scopo, i risultati ottenuti. Inoltre, la dimostrazione del funzionamento del codice realizzato da parte degli studenti

Il voto finale verrà proposto dal docente dopo un’attenta valutazione della relazione scritta al punto 1) e della presentazione in forma orale al punto 2).

Criteri di valutazione:
I criteri di valutazione con cui verrà effettuata la verifica delle conoscenze e delle abilità attese, saranno:

1. Completezza delle conoscenze acquisite
2. Capacità di analisi di un problema reale attraverso le tecniche presentate nel corso
3. Proprietà nella terminologia tecnica usata, sia scritta che orale
4. Originalità e indipendenza nella identificazione della soluzione scelta per il problema proposto
5. Competenza e coerenza nell’interpretazione del significato dei risultati ottenuti
6. Abilità nell’utilizzo degli strumenti informatici nello studio del problema assegnato
7. Qualità dell’esposizione orale
8. Qualità dell’esposizione scritta

Testi di riferimento:

Eventuali indicazioni sui materiali di studio:
Report tecnici, articoli scientifici, software e altro materiale vario saranno resi disponibili dal docente qualora lo si renda necessario. Il materiale sarà reso disponibile tramite il sito del corso.

Altri libri utili sono:
- Per un ripasso di concetti di algebra lineare:
- Per lo studio di modelli audio e l’utilizzo di HMM per il riconoscimento vocale:

INTRODUCTION TO MOLECULAR BIOLOGY
(Titolare: Prof.ssa MARIA PENNUTO)

Periodo: III anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 6,00 CFU

Prerequisiti: Nessuno

Conoscenze e abilità da acquisire:
Gli studenti apprenderanno come vengono generati di dati di "omics", da quali tipi di campioni biologici derivano (DNA, RNA, proteine), nozioni da integrare con la teoria dell’evoluzione di Darwin e le leggi della genetica di Mendel. Si introdurrà il concetto di mutazione, da distinguere dal concetto di Single Nucleotide Polymorphism (SNP). Agli studenti verranno forniti esempi di come si ottengono i dati di omics in lab. Impareranno come l’evoluzione e la pressione selettiva modificano la genetica degli esseri viventi e la trasmissione dell’informazione genetica nell’equilibrio dinamico che governa i processi biologici. Gli studenti apprenderanno il dogma della biologia, che vede la conservazione dell’informazione genetica nel DNA, molecola da cui viene prodotto l’RNA, da cui a sua volta vengono prodotte le proteine, e come l’informatione genetica è conservata nel nostro genoma e trasmessa alla progenie. Inoltre, gli studenti apprenderanno come e perché l’espressione genica differisce da un tessuto ad un altro, facendo sì che lo stesso gene venga
differenzialmente espresso in tessuti diversi.

In questo corso gli studenti inizieranno dalla teoria dell'evoluzione fino ad arrivare al concetto di gene, mutazioni, genetica e leggi di Mendel. Gli studenti otterranno nozioni di biologia molecolare al fine di capire da quali fonti -campioni biologici e materiale biologico (DNA, RNA, proteine)- si ottengono i dati di omics.

Lo studente farà diverse esperienze di laboratorio al fine di verificare come di manipolano DNA, RNA e proteine, come si clonano i geni (ingegneria genetica) e come questi si esprimono in cellula.

Attività di apprendimento previste e metodologie di insegnamento:
L'insegnante farà utilizzo di diapositive (file ppt) che saranno disponibili agli studenti sulla piattaforma moodle. Si effettueranno ripassi al fine di approfondire specifici argomenti. Si faranno verifiche ad intervalli al fine di valutare lo stato di apprendimento degli studenti.

Per ciò che riguarda le esperienze di laboratorio, gli studenti effettueranno esperimenti di manipolazione degli acidi nucleici e uso di colture cellulari.

Contenuti:
Il corso ha lo scopo di fornire agli studenti le conoscenze e gli strumenti necessari a comprendere i seguenti aspetti:

GENETICA:
1. Leggi di Mendel (genetica mendeliana) ed eccezioni alle leggi di Mendel (genetica non mendeliana): caratteri ereditari.
2. Cenni della teoria dell'evoluzione: da Lamarck a Darwin.
3. Cenni storici della scoperta del DNA: dalla trasmissione del carattere ereditario al concetto di GENE.
4. Il dogma della biologia molecolare: DNA->RNA->PROTEINA
5. La cellula: organelli, compartimenti, funzioni.

DNA
1. Chimica: le basi azotate.
2. Struttura: la doppia elica.
3. Il codice genetico: il DNA è letto in triplette.
4. La replicazione del DNA.
5. Tecniche di purificazione del DNA; preparazioni di piccole e grandi quantità di DNA.
6. Tecniche di amplificazione del DNA: la PCR.

RNA
1. Chimica: le basi azotate.
2. Struttura: molecola a singolo filamento.
3. La trascrizione dell'RNA: regolazione dell'espressione genica.
4. Tecniche di purificazione dell'RNA e conversione in cDNA.
5. Tecniche di analisi dell'espressione genica su singolo gene e omics: la RT-PCR, microarrays, NGS.

PROTEINE
2. Struttura primaria, secondaria, terziaria e quaternaria.
4. Tecniche di analisi delle proteine: Western blotting, Coomassie, spettrometria di massa.

Il corso prevede esperienze di LABORATORIO con preparazione di campioni di DNA, RNA e proteine, espressione di geni target in cellula e analisi funzionale in cellule in coltura.

Modalità di esame:
Esame orale: Allo studente verrà chiesto di presentare un argomento a piacere. Seguiranno due domande specifiche. Lo studente potrà fare uso di diapositive sull'argomento a scelta.

Criteri di valutazione:
Valuteremo le conoscenze acquisite durante il corso inerenti concetti di base sulla teoria dell'evoluzione, la genetica e le leggi di Mendel, biologia molecolare e cellulare di base, caratteristiche di DNA, RNA e proteine, ed espressione genica tessuto-specifica.

Testi di riferimento:

Eventuali indicazioni sui materiali di studio:
Le diapositive utilizzate saranno fornite agli studenti.
Conoscenze e abilità da acquisire:
Il corso renderà gli studenti in grado di comprendere gli aspetti giuridici e di anticipare le conseguenze legali delle attività basate sull'I.A. Gli studenti saranno chiamati a riflettere sulle questioni più contemporanee e controverse dell'I.A.

Attività di apprendimento previste e metodologie di insegnamento:

- Lezioni
- Seminari
- Workshops
- Letture preassegnate.

Contenuti:
- the concept of data; personal, sensitive and economic data; big data
- the concepts of identity and digital identity
- property of data, choices in the management of data
- supranational, international and national laws on data processing
- civil and criminal protection of privacy
- new contents and concepts of privacy: big data, cell phones; videos; wearable technologies, etc.
- the right to be forgotten
- social network, right to be forgotten, responsibility
- provider's criminal responsibility
- civil and criminal aspects of profiling activity
- automatic data processing, human responsibilities
- big data (collection, analysis, processing) and their influence on fundamental rights
- the issue of genetic data
- big data and economy
- phishing
- financial crimes and artificial intelligence

Modalità di esame:
Scritto

Criteri di valutazione:
Gli studenti verranno valutati in base al grado di conoscenze teoriche e pratiche nei campi oggetto dell'attività didattica e in base alla loro capacità di riflettere criticamente sugli aspetti legalmente più controversi della I.A.

Testi di riferimento:
CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio:
Appunti dalle lezioni.

Materiali utili possono essere reperiti a questo indirizzo web:
http://www.bigdatalaw-unipd.it/

MATHEMATICAL MODELS AND NUMERICAL METHODS FOR BIG DATA

(Titolare: Dott. STEFANO CIPOLLA)

Periodo: Il anno, 1 semestre

Indirizzo formativo: Corsi comuni

Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Background on Matrix Theory: Type of matrices: Diagonal, Symmetric, Normal, Positive Definite; Matrix canonical forms: Diagonal, Schur; Matrix spectrum: Kernel, Range, Eigenvalues, Eigenvectors and Eigenspaces Matrix Factorizations: LU, Cholesky, QR, SVD

Conoscenze e abilità da acquisire:
Learning the mathematical and computational foundations of state-of-the-art numerical algorithms that arise in the analysis of big data and in many machine learning applications. By using modern Matlab toolboxes for large and sparse data, the students will be guided through the implementation of the methods on real-life problems arising in network analysis and machine learning.

Attività di apprendimento previste e metodologie di insegnamento:
Lectures supported by exercises and lab

Contenuti:
Numerical methods for large linear systems
Numerical methods for large eigenvalue problems

- Jacobi and Gauss-Seidel methods
- Subspace projection (Krylov) methods
- Arnoldi method for linear systems (FOM)
- (Optional) Sketches of GMRES
- Preconditioning: Sparse and incomplete matrix factorizations

Large scale numerical optimization

- The power method
- Subspace Iterations
- Krylov-type methods: Arnoldi (and sketches of Lanczos + Non-Hermitian Lanczos)
- (Optional) Sketches of their block implementation
- Singular values VS Eigenvalues
- Best rank-k approximation

Network centrality

- Perron-Frobenius theorem
- Centrality based on eigenvectors (HITS and Pagerank)
- Centrality based on matrix functions

Data and network clustering

- K-Means algorithm
- Principal component analysis and dimensionality reduction
- Laplacian matrices, Cheeger constant, nodal domains
- Spectral embedding
- (Optional) Lovasz extension, exact relaxations, nonlinear power method

Supervised learning

- Linear regression
- Logistic regression
- Multiclass classification
- (Optional) Neural networks

Modalita' di esame:
Written exam

Testi di riferimento:
Lars Elden, Matrix Methods in Data Mining and Pattern Recognition, Second Edition. SIAM, 2019
NETWORK SCIENCE

(Titolare: Prof. TOMASO ERSEGHE) - Mutuato da:

Periodo: Il anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Attività di apprendimento previste e metodologie di insegnamento:
Il modulo prevede:
- 18 lezioni frontali che diano una panoramica sulle tematiche e sulle metodologie, comprendano una carrellata sugli scenari applicativi, e includano un approfondimento matematico sulle tematiche introdotte;
- 6 lezioni di laboratorio atte a guidare gli studenti all’uso di programmi al calcolatore per l’analisi di una rete.

Contenuti:
Il modulo prevede di coprire i seguenti contenuti:
1. Modelli di rete - Proprietà basilari di una rete: grafi, matrice di adiacenza, distribuzione del grado dei nodi, connettività; Modello Erdos-Renyi; Grafi aleatori; Leggi di potenza e reti scale-free; Fenomeno dello small-world; Hubs; Generazione e espansione di una rete; Modello di Barabasi-Albert; Attaccamento preferenziale; Evolution networks; Assortatività; Robustezza.
2. Ranking - Hubs and authorities; PageRank: teletrasporto, ranking su argomenti specifici, misure di prossimità, grado di fiducia; Metodi di accelerazione tramite interpolazione quadratica.
3. Rilevazione di comunità - Dendrogrammi; Metodo di Girvan Newman e betweenness; Ottimizzazione della misura di modularità; Clustering spettrale; Altri algoritmi di clustering; Modello nucleo-periferia per comunitÀ sovrapposte; Metodo di percolazione della Clique; Modello di affiliazione dei cluster e BigCLAM.
4. Altri argomenti: Link prediction; Scenari di applicazione

Testi di riferimento:

Eventuali indicazioni sui materiali di studio:
Tutto il materiale didattico presentato durante le ore di lezione frontale Â reso disponibile sulla piattaforma "http://elearning.dei.unipd.it".

OPTIMIZATION FOR DATA SCIENCE

(Titolare: Prof. FRANCESCO RINALDI)

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Conoscenze di base in:
- Analisi reale e Calcolo;
- Algebra lineare;
- Teoria della probabilitÀ.

Conoscenze e abilitÀ da acquisire:
Comprendere modelli e metodi di ottimizzazione nell’ambito del Data Science. Nello specifico:
1) Comprendere le proprietà teoriche che sono d’interesse per lo sviluppo di modelli matematici in data science.
2) Analizzare e utilizzare modelli matematici esistenti per la risoluzione di problemi reali nell’ambito del data science.
3) Sviluppare e/o utilizzare metodi di risoluzione appropriati.

Attività di apprendimento previste e metodologie di insegnamento:
- Il corso si baserà su lezioni frontali;
- Il docente utilizzerÀ la lavagna e le slides;
- Dispense e slide verranno rese disponibili sulla piattaforma moodle.

Contenuti:
1. Ottimizzazione lineare: Teoria e algoritmi
(a) Modelli di programmazione lineare in Data Science;
2. Insiemi convessi e funzioni convesse
(a) Convessità, nozioni di base;
(b) Funzioni convesse: nozioni di base e proprietà;

3. Ottimizzazione convessa non vincolata:
(a) Modelli in Data Science;
(b) Caratterizzazione delle soluzioni ottime;
(c) Metodi tipo gradiente;
(d) Metodi tipo gradiente a blocchi;
(e) Metodi per l'ottimizzazione stocastica.

4. Ottimizzazione convessa vincolata:
(a) Modelli in Data Science;
(b) Caratterizzazione delle soluzioni ottime;
(c) Metodi basati su approssimazioni poliedrali;
(d) Metodi di proiezione;

5. Ottimizzazione su reti di grande dimensione
(a) Modelli di reti in Data Science;
(b) Metodi di ottimizzazione distribuita.

Modalità di esame:
- Prova scritta alla fine del corso
- Esercizi
- Progetto (Opzionale)

2) La prova d’esame A’ scritta e prevede 5 domande a risposta aperta.
3) Il progetto (opzionale) può essere richiesto per approfondire tematiche specifiche.
La prova scritta contribuisce all’ 85% del voto.
Gli esercizi contribuiscono al 15% del voto.
Il progetto permette un incremento da 1 a 3 punti del voto.

Criteri di valutazione:
La valutazione della preparazione dello studente si baserà:
- sulla comprensione degli argomenti svolti in aula;
- sull’acquisizione dei concetti di carattere teorico;
- sulla capacità di utilizzare in maniera autonoma e consapevole i modelli e le metodologie risolutive proposte.

Testi di riferimento:

Process Mining
(Titolare: Dott.ssa CHIARA GHIDINI)
Periodo: II anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Basic notions of algorithms, data structures and programming.

Conoscenze e abilità da acquisire:
The aim of the course is to introduce and investigate the main methods and concepts that pertain the modeling and analysis of business processes. More in detail, the course will focus on the main modeling languages (BPMN, Petri Nets, and Declare), on the main methodologies for manual modeling and analysis and on the main algorithms for the (semi)automatic modeling and analysis (the so-called process mining). By exploiting concrete software platforms several algorithms will be also investigated in a ‘hands-on’ fashion on real data.
At the end of the course the students should have a detailed knowledge of the main methods and concepts of business process modeling e mining, of the main metrics used to support the analysis of business processes and of the main algorithms of process mining.
The course consists of lectures. Some practical activities and exercises will require the use of computers.

The course will cover the topics listed below:

1. MODELING AND ANALYSIS: THE BPMN PERSPECTIVE
 - Process Identification
 - Essential and Advanced Process Modeling in BPMN
 - Qualitative Analysis
 - Quantitative Analysis
 - Process redesign

2. MODELING AND ANALYSIS: THE PETRI NET PERSPECTIVE
 - An introduction to Petri Nets
 - Petri nets and colored petri nets
 - Simulation based analysis
 - Reachability and coverability analysis
 - Process modeling and analysis with PN

3. PROCESS MINING
 - Data & Process mining
 - Getting the data: the construction of event logs
 - An introduction to Process discovery
 - Advanced process discovery
 - Conformance checking - replay based
 - Conformance checking - logic based
 - Mining additional perspectives
 - Typical use cases, e.g., medical processes

4. DECLARATIVE APPROACHES
 - Declarative approaches and Declare
 - Declarative process mining (discovery in Declare) and hybrid approaches

5. PREDICTIVE PROCESS MONITORING
 - Basic Predictive Process Monitoring techniques
 - Advanced Predictive Process Monitoring techniques

Modalità di esame:
Written exam and project. The project is due and has to be discussed by the end of the course.

Criteri di valutazione:
The project work, and the written exam, will be evaluated on the basis of the following criteria: i) student’s knowledge of the concepts, methods, and technologies; ii) ability of the student to master the implementation technology; iii) student’s capacity for synthesis, clarity, and abstraction, as demonstrated by the written exam and project presentation. The final grade is obtained as the weighted sum of the grades of the written exam (80%) and the project (20%).

Testi di riferimento:
CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio:
Slides, exercises and scientific papers will be provided.

STATAGE
(Titolare: Prof. MARCO FERRANTE)

Periodo: Il anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 15,00 CFU

Contenuti:
La stage consiste in un periodo di attività all’interno di un’azienda, un’istituzione o un centro di ricerca esterno all’Università di Padova

Testi di riferimento:
CONTENUTO NON PRESENTE

STATISTICAL LEARNING
(Titolare: Prof. ALBERTO ROVERATO)

Indirizzo formativo: Corsi comuni
Prerequisiti: basic probability theory; multivariable calculus; linear algebra; basic computing skills

Conoscenze e abilità da acquisire:
become familiar with statistical thinking; gain adequate proficiency in the development and use of standard statistical inference tools; be able to analyse datasets using a modern programming language such as R

Modalità di esame:
written test for mod-A
project work and oral exam for mod-B
Criteri di valutazione:

The successful student should show knowledge of the key concepts, skills in the analysis of data and competency in applications.

Moduli del C.I.:
Statistical Learning 1
Statistical Learning 2

STATISTICAL LEARNING 1
(Titolare: Prof. ALBERTO ROVERATO)

Periodo: I anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Contenuti:
Part 1: Modes of Inference
- Data: summary statistics, displaying distributions; exploring relationships
- Likelihood: the likelihood, likelihood for several parameters
- Estimation: maximum likelihood estimation; accuracy of estimation; the sampling distribution of an estimator; the bootstrap
- Hypothesis testing
- Other approaches to inference

Attività’ di apprendimento previste e metodologie di insegnamento:
Lectures and Laboratories

Eventuali indicazioni sui materiali di studio:
Applications can be found in:

Methods for specific fields of applications can be found in the following books:

Testi di riferimento:
Lavine, M., Introduction to Statistical Thought. : None, 2013
Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Introduction to Statistical Learning. : Springer, 2013

STATISTICAL LEARNING 2
(Titolare: Prof. ALBERTO ROVERATO)

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Contenuti:
Part 2
- Models: normal linear models; inference for linear models; generalized linear models; inference for generalized linear models
- Model selection
- Multivariate Analysis: dimension reduction; classification; clustering

Attività’ di apprendimento previste e metodologie di insegnamento:
Lectures and Laboratories

Eventuali indicazioni sui materiali di studio:
Applications can be found in:

Methods for specific fields of applications can be found in the following books:

Testi di riferimento:
Lavine, M., Introduction to Statistical Thought. : None, 2013
Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Introduction to Statistical Learning. : Springer, 2013

STATISTICAL METHODS FOR HIGH DIMENSIONAL DATA
(Titolare: Prof. BRUNO SCARPA)

Periodo: II anno, 1 semestre

Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Statistical learning, Stochastic methods

Conoscenze e abilità da acquisire:
This course aims at introducing the students to the main statistical features and concepts underlying the analysis of high dimensional data, as well as providing statistical solutions to problems arising when analysing real data on many different fields (business, society, medicine, psychology, physics, etc).

Attività di apprendimento previste e metodologie di insegnamento:
Lezioni frontali. Esercitazioni in laboratorio

Contenuti:
Every year some of the following topics will be presented, according also to the preferences of the students.

1. REGRESSION MODELS FOR HIGH-DIMENSIONAL DATA
 1.1 Incremental algorithms with limited memory, stochastic gradient descent, inference
 1.2 Sparsity, penalization inducing sparsity
 1.3 Recall of Lasso and Elastic-Net for GLM
 1.4 Extensions: adaptation, fusion, dealing with categorical variables
 1.5 Group LASSO
 1.6 Non-convex penalties

2. STATISTICAL ANALYSIS OF NETWORK DATA
 2.1 Introduction to network structures of data
 2.2 Network and nodes indicators
 2.3 Community detection
 2.4 Basics statistical models and inference (Erdos-Renyi, p1, ERGM)
 2.5 Bayesian models (Stochastic block models, Latent space models)

3. STATISTICAL METHODS FOR TEXT MINING
 3.1 Introduction
 3.2 Data preparation and preprocessing (text scanning, stemming, tagging)
 3.3 Dimensionality reduction and t-SNE
 3.4 Topic models and Latent Dirichlet Allocation
 3.5 Sentiment analysis and iSA (integrated Sentiment Analysis)

4. CLUSTERING
 4.1 Introduction to clustering and recall of basic algorithms
 4.2 Model-based clustering
 4.3 Gaussian mixtures

5. TOPICS IN STATISTICAL LEARNING AND DATA MINING METHODS
 5.1 Generalization of boosting: Adaboost as additive logistic model, Gradient boosting and XGboosting
 5.2 Association rules and Market basket analysis

6. COMPUTATIONAL ISSUES

Modalità di esame:
Prova pratica e prova orale

Criteri di valutazione:
Students will be evaluated according to their level of knowledge of the key concepts in analysing high dimensional data and their ability to apply them to real cases.

Testi di riferimento:
CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio:
The teacher in charge will provide lecture notes, exercises and scientific papers

STOCHASTIC METHODS
(Titolare: Prof. MARCO FERRANTE)

Periodo: I anno, 1 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 48A; 6,00 CFU

Prerequisiti:
Nozioni di base di calcolo differenziale e integrale, algebra lineare e calcolo delle probabilità.

Conoscenze e abilità da acquisire:
Lo scopo del corso è di introdurre metodici e concetti di Calcolo delle Probabilità che hanno un forte impatto come strumenti algoritmici, computazionali e nello studio delle reti. Attraverso l’uso del software R (R development Core Team, 2006), alcuni problemi specifici saranno trattati con simulaizone al calcolatore.
Attivita' di apprendimento previste e metodologie di insegnamento:

Lezioni frontali. Alcune esercitazioni prevedono simulazioni al calcolatore

Contenuti:
1. Richiami di Calcolo delle Probabilità.
 - distribuzioni discrete e continue
 - variabili aleatorie, valor atteso e valor atteso condizionale
 - approssimazione di distribuzioni di probabilità

2. Catene di Markov e passeggiate aleatorie
 - Catene di Markov e relative distribuzioni stazionarie
 - Monte Carlo (MCMC), convergenza di algoritmi MCMC-based
 - Electrical networks.

3. Grafi aleatori
 - Grafi di Erdos-Renyi: connettività, componente gigante
 - Grafi aleatori regolari
 - Grafi dinamici. Preferential attachment.

Modalita' di esame:
Esame scritto

Criteri di valutazione:
Il voto finale A è basato sul risultato della prova scritta, il cui scopo principale è verificare la capacità di usare in modo corretto ed efficiente le tecniche esposte, applicandole a problemi concreti.

Testi di riferimento:
Paolo Dai Pra, Stochastic Methods for Data Science.

Eventuali indicazioni sui materiali di studio:
Il docente fornirà delle dispense, assieme ad altro materiale didattico: esercizi, eventuali estratti di articoli scientifici

STRUCTURAL BIOINFORMATICS

(Titolare: Dott. DAMIANO PIOVESAN) - Mutuato da: Laurea magistrale in Informatica (Ord. 2014)

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 32A+16E; 6,00 CFU

Prerequisiti:

Conoscenze e abilita' da acquisire:
Il corso intende comunicare le conoscenze di base sulla struttura e funzione della materia vivente nonché i principali metodi computazionali per il loro studio. Inoltre intende permettere allo studente lo svolgimento autonomo di un progetto di ricerca in bioinformatica strutturale, definendo lo stato dell'arte per un problema aperto e un tentativo di risolverlo con lo sviluppo di software che estenda librie esistenti e la valutazione critica dei risultati ottenuti.

Attivita' di apprendimento previste e metodologie di insegnamento:
Il corso si compone di lezioni frontali, esercitazioni pratiche al computer, sviluppo di un progetto e presentazione dello stesso con discussione critica. Le esercitazioni servono per familiarizzare lo studente con le librerie software da usare per un progetto bioinformatico relativo ad un problema attuale diverso per ogni gruppo. La presentazione del progetto richiede una discussione in cui far emergere i punti di forza e debolezza del software implementato.

Contenuti:
Il corso si compone di due parti:
1) Introduzione alla materia vivente (2 CFU):
 1.1) Cenni di chimica organica, interazioni deboli ed energetica
 1.2) Struttura e funzione di DNA e proteine
 1.3) Lipidi, membrane e trasporto cellulare
 1.4) Metodi sperimentali per la determinazione strutturale

2) Biochimica computazionale (4 CFU):
 2.1) Banche dati biologiche
 2.2) Librerie software e concetti per allineamenti di sequenza e ricerca in banche dati
 2.3) Relazione sequenza AACS struttura nelle proteine e classificazione strutturale
 2.4) Metodi per la predizione della struttura delle proteine da sequenza, l'esperimento CASP
 2.5) Metodi per la predizione di funzione e interazioni delle proteine, l'esperimento CAFA
 2.6) Proteine non globulari, disordine e ripetizioni strutturali

Modalita' di esame:
L'esame si compone di tre parti separate, che devono essere superate tutte: (i valori tra parentesi indicano i pesi per il voto complessivo)
1) Test scritto sulle nozioni di biochimica (ca. 30%)
2) Progetto software (ca. 40%)
3) Presentazione del progetto con valutazione critica (ca. 30%)

Criteri di valutazione:
Viene valutata:
1) la comprensione di concetti e gli algoritmi presentati a lezione
2) la capacità di applicare le nozioni fornite a lezione su problemi reali
3) la capacità critica di saper utilizzare i metodi nei modi più opportuni, scegliendo tra le alternative possibili
4) la capacità di sviluppare software riutilizzabile estendendo librerie esistenti
5) la capacità espositiva e di discussione critica

Testi di riferimento:

Eventuali indicazioni sui materiali di studio:
Sul sito E-learning vengono resi disponibili molti materiali per il corso. Questi comprendono i lucidi del corso (appena disponibili), le dispense e la letteratura usata per i progetti. Le dispense scaricabili in formato PDF contengono oltre 300 pagine per facilitare lo studio.

VISION AND COGNITIVE SERVICES
(Titolare: Prof. LAMBERTO BALLAN) - Mutuato da: Laurea magistrale in Informatica (Ord. 2014)

Periodo: I anno, 2 semestre
Indirizzo formativo: Corsi comuni
Tipologie didattiche: 32A+16L; 6,00 CFU

Prerequisiti:
Lo studente deve avere conoscenze di base di programmazione e algoritmi. Inoltre consigliabile conoscere i concetti di base in termini di probabilità e di analisi delle funzioni multivariate.

Conoscenze e abilità da acquisire:
Questo corso insegna i concetti, i metodi e le tecnologie alla base dei Servizi Cognitivi, vale a dire API, SDK e servizi, tipicamente disponibili nella nuvola (cloud), che aiutano gli sviluppatori software a creare applicazioni di intelligenza artificiale. Esempi di funzioni intelligenti che possono essere aggiunte ad un'applicazione tramite l'utilizzo di Servizi Cognitivi sono: il rilevamento delle emozioni da video; riconoscimento facciale, del contenuto visivo e vocale; comprensione linguistica e del parlato.
I corso inoltre insegna le competenze e le abilità specifiche necessarie per applicare tali concetti alla progettazione e all'implementazione di applicazioni di intelligenza artificiale.
Gli studenti dovranno affrontare esercizi pratici in laboratorio informatico, in modo da provare l'applicazione delle conoscenze acquisite a piccoli esempi pratici.

Attività di apprendimento previste e metodologie di insegnamento:
Il corso consiste in lezioni e esercizi in laboratorio informatico. Gli esercizi in laboratorio informatico consentono agli studenti di sperimentare, in diversi scenari operativi, le tecniche introdotte a lezione. In questo modo gli studenti possono verificare sperimentalmente i concetti appresi in classe, acquisire la capacità di applicare i concetti appresi e di esprimere un giudizio critico.

Contenuti:
Il corso comprende gli argomenti elencati di seguito:
- Introduzione:
 Dalla conoscenza umana ai servizi cognitivi intelligenti; Breve introduzione ai paradigmi di Intelligenza Artificiale e Apprendimento Automatico.
- Servizi cognitivi:
 Concetti basilari; Lingua, Discorso e servizi di visione; Servizi e API principali (IBM Watson, Microsoft, Google Cloud); Tecnologie abilitanti.
- Problemi di apprendimento automatico e di applicazione:
 Classificazione; Apprendimento delle rappresentazioni e selezione delle variabili categoriali; Processo di apprendimento e di valutazione; Misure di valutazione.
- Riconoscimento visivo:
 "Insegnare ai computer a vedere": estrarre informazioni ricche da dati visivi; Slide: perché è la visione artificiale difficile?; Progettare funzionalità visive efficaci; Apprendimento delle rappresentazioni nella visione artificiale; Comprensione delle immagini.
- Esercizi pratici:
 Cosa c'è nella scatola? Come costruire una pipeline di riconoscimento visivo; Utilizzo di servizi cognitivi per il riconoscimento / comprensione delle immagini; Combinazione di diversi servizi in uno scenario multi-modale.

Modalità di esame:
Lo studente deve sviluppare, in accordo con il docente, un piccolo progetto applicativo. Inoltre, lo studente deve presentare una relazione scritta sul progetto svolto, in cui si discutono criticamente tutte le questioni trattate durante la sua realizzazione. Lo studente presenterà ed discuterà il progetto e, se ritenuto necessario dal docente, affronterà un esame orale.

Criteri di valutazione:
Il lavoro di progetto e l'eventuale esame orale saranno valutati sulla base dei seguenti criteri: a) conoscenza da parte dello studente dei concetti, dei metodi e delle tecnologie alla base dei Servizi Cognitivi; b) capacità dello studente di padroneggiare la tecnologia di implementazione; c) capacità di sintesi, chiarezza e astrazione dello studente, come dimostrato dalla relazione scritta e dal progetto.

Testi di riferimento:
CONTENUTO NON PRESENTE

Eventuali indicazioni sui materiali di studio:
Le presentazioni mostrate durante le lezioni sono rese disponibili agli studenti come materiale di riferimento.