Presentazione

Organizzazione della Didattica

DM270
FISICA ORD. 2014

Teoria delle interazioni fondamentali

6

Corsi comuni

 

Frontali Esercizi Laboratorio Studio Individuale
ORE: 48 0 0 125

Periodo

AnnoPeriodo
II anno1 semestre

Frequenza

Facoltativa

Erogazione

Convenzionale

Lingua

Inglese

Calendario Attività Didattiche

InizioFine
02/10/201719/01/2018

Tipologia

TipologiaAmbitoSSDCFU
affine/integrativo Nessun ambitoFIS/026


Responsabile Insegnamento

ResponsabileSSDStruttura
Prof. MASTROLIA PIERPAOLOFIS/02Dipartimento di Fisica e Astronomia "Galileo Galilei" - DFA

Altri Docenti

DocenteCoperturaSSDStruttura
Dott. PASSERA MASSIMOContrattoN.D.

Attività di Supporto alla Didattica

Non previste

Bollettino

Il corso richiede un buon livello di conoscenza di fisica teorica, teoria quantistica dei campi, e teoria delle interazioni fondamentali.

Il corso si propone di fornire allo studente nuovi metodi di calcolo per ampiezze di scattering in teorie di gauge, e di discutere alcune applicazioni in ambito del Modello Standard.

Lezioni frontali ed esercizi

- PART I: MODERN METHODS FOR SCATTERING AMPLITUDES (P. Mastrolia) 1. Unitarity, Optical Theorem, Decay Rates 2. Cutkosky Rules, the Largest Time Equation, Feynman Tree Theorem 3. The Spinor Helicity Formalism 4. On-shell recurrence relation for tree-level amplitudes 5. One-Loop integrals and Integration-by-parts Identities 6. Unitarity-based methods 7. Integrand Reduction method 8. Differential Equations for Feynman Integrals PART II: TOPICS IN PRECISION ELECTROWEAK PHYSICS (M. Passera) 1. Introduction to the quantum corrections: The loop expansion, UV Divergent integrals, Dimensional regularization (DR). 2. Basic loops in QED: The photon self-energy at one-loop in DR, The photon propagator, Renormalization of the electric charge, Example of cancellation of UV divergences, The effective electric charge, Mass renormalization, Wave-function renormalization for the external legs. 3. The electron-photon vertex in QED: Formal structure and one-loop expression, The Dirac and Pauli form factors F_1(q^2) and F_2(q^2). 4. The anomalous magnetic moment of the electron: Preliminary remarks: g=2, The QED contribution, Other contributions and the determination of the fine-structure constant alpha. 5. The anomalous magnetic moment of the muon in the full SM: The QED contribution, The hadronic contribution, The EW contribution, SM prediction vs. experiment. 6. Renormalization of the electroweak theory, Mass renormalization for unstable particles, The On-Shell scheme, The M_W-M_Z relation and Sirlin's Delta r, The MSbar scheme, Introduction to the renormalization group. 7. The SM Higgs boson: Indirect limits from EW precision tests, The LHC discovery.

Esame orale


M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory. : Addison-Wesley Publishing Company, M.D. Schwartz, Quantum Field Theory and the Standard Model. : Cambridge University Press, 2014 F. Mandl and G. Shaw, Quantum FIeld Theory. : Wiley,